
Keeping Hackers at Bay
Improve password security to help keep your company’s systems safe

By Robert Andrews

Since ancient times passwords have been used to prove identity, loyalty and membership. MIT’s CTSS
computer, introduced in 1961, is the first known use of passwords in computing. This system provided
each professor with four hours computing time. In 1962, one professor was unhappy with his limited
time, guessed a colleague’s password and used the colleague’s time as well. Hence, within one year of
computer passwords, the first computer hacker was born. Since then, IT professionals have been in a
constant race to make systems ever more secure from the growing number of would-be hackers.

Storing Passwords
In modern computing systems, including IBM i, passwords are never stored in their plain text or original
version. Any listing or file that contained the actual user’s password would be a ripe target and a major
source of insecurity. Therefore, systems today store what is known as a one-way cryptographic hash.
This one-way function takes in the password and returns a scrambled result, known as ciphertext. This
function must be deterministic, meaning that given the same input, the same output will always be
returned. This way, the system stores just the output of this function. Because the function is
specifically designed to be one way, provided with the ciphertext, there is no way to reverse it and
return the original plain-text password.

If two users selected the same password, they would get the same hash out of the function. To help
with this, systems add “salt” or random values specific to each user. This way, even if two users happen
to choose the same password, once combined with the salt and hashed, the results would be different.
Rainbow tables, massive lists of pre-calculated hashes, were effective in cracking passwords before salt
was added. When a user attempts to login, the password provided is combined with the user’s unique
salt and run through the same one-way function. The ciphertext result is compared to the stored
ciphertext. If the two strings match, then the same input was used and the user is authenticated to the
system.

Cracking Passwords
Because systems need to store the hash result, the first step is to extract the ciphertext version of the
password. These may be centrally located in a single file or stored as part of each individual profile.
Once extracted, the hacker has a target to shoot for. Two main ways exist for cracking passwords:
dictionary attacks and brute force.

A dictionary attack is one where a present list of possible passwords is stored. Each of these possible
passwords are salted, hashed and checked for a matching ciphertext. If they match, the result is found.

If not, the next possible password from the dictionary is attempted. As one might deduce, if the user’s
password is not in the list of possible passwords, it won’t be matched and the account will still be
secure. These dictionaries can be ordered by most popular passwords first in order to more quickly find
a match. In addition, dictionaries can be customized based on the target. If the target’s business, brand,
sector, industry or location are known, the dictionary can be customized to include key words and
phrases from those areas. For example, if the target password was from a company located in
Wisconsin, sports teams and local city names could be added to the dictionary.

A brute force attack attempts to try all possible combinations of the input character set until a match is
found. There is no need to start with a preset dictionary. What needs to be known is what characters are
possible in the password and its length (specifically maximum length). For example, a cellphone has a
four-digit passcode lock. The character set is only 10 possible values, 0 to 9, and four positions so there
are 104, or 10,000 possible values. A brute force would start at 0000 and go to 9999 testing all 10,000
possible values until the proper code was found. If, instead, the phone had a four-character word, there
are now 26 lower case letters and 26 uppercase letters for a total of 524 or 7,311,616 possible values,
731 times more! Increasing the number of different characters that can be used dramatically increases
the number of attempts required to cover all possible values.

Preventing Attacks
Knowing how passwords can be attacked, defenses can be designed to counter these threats. To
prevent against a dictionary attack, the password needs to be something that would not be in a
common dictionary or a hacker’s dictionary. To help with this, system administrators have placed in
rules requiring items like digits (0 to 9) or special characters (!, @, #, etc.) be included in passwords.
Sadly, too many people took an easy way around these rules and have informally developed what is
known as leet speak (stylized 1337) where 3s would replace e’s, 4s replace a’s, !s replace i’s, and so on.
These substitutions have become so common that many dictionary cracking tools automatically try each
word in its original form as well as doing a leet speak transformation on the word. This essentially
doubles the effectiveness of the dictionary without needing to pre-generate all of those possible
attempts. In addition to rules requiring non-character values, systems can also keep lists of the top
common passwords and ensure they are not used in passwords.

While these rules make a dictionary attack less effective, with brute force attacks they have the opposite
effect. They do this by reducing the overall number of possible combinations that need to be attempted
to cover the complete space of valid passwords. For example, assume an IBM i system running at
password level 2 or 3. In this case, the system will use the password character set that is 26 lower case
letters, 26 upper case letters, 10 digits, 32 special characters and the space for a total of 95 possible
characters. If the password is eight characters long, a total number of 958 or 6,564,370,583,281,250
(6.56 quadrillion) total possible combinations exists. Now assume we add in a standard rule set that
requires at least one digit, one character and one special character in the same password. Result is
52*10*33*955or 132,780,808,875,000 (132 trillion) combinations. While this is still a lot, it’s only 2.02
percent of the total possibilities. Therefore, the amount of time for a brute force attack is reduced 50
times over by putting in these standard rules (see Figure 1, page TK).

While this may seem like a large number, current computing hardware with multiple cores and
advanced GPUs is shortening the amount of time required for brute force attempts from years to days.
The advent of BitCoin has inadvertently given rise to other software that exploits the same underlying
formulas for password cracking. Companies are also selling systems specifically designed for hacking
with custom Linux software that handles the password cracking.

What is the Answer?
So with past attempts to stop hacking counteracting each other, what is the answer? Length. Long
passwords are the best defense against today’s attacks and they don’t need to be complex. These long
passwords are often called passphrases. They do not need to have strange characters or numbers
substituted for letters. The main argument against long pass phases has been that they are hard to
remember. This does not need to be the case! Many methods and techniques make long, yet easy to
remember, passphrases. One way to develop a long password is to use a line from a song, movie or
book. Spell it out, with spaces, capitalization, and punctuation, and it will be difficult for both dictionary
and brute force attacks to find a match. Another method is to pick four words or items and just put
those together. A classic geek cartoon from xkcd recommends “correct horse staple battery” as one
such example. This is 16 times stronger than “Tr0ub4dor&3,” which many may consider a strong
password by today’s rule environment. Another technique known as password haystacks involves
repeating patterns to lengthen a password. In the password “Gr33nTr33s,” by adding periods and
colons, a small tree diagram can be made that more than doubles the length of the password to
“.:..:.Gr33nTr33s.:..:.” And finally, take advantage of password management tools that can generate and

No Restrictions One Restriction Many Restrictions

Attack Effectiveness vs. Password Restrictions

Brute Force Dictionary

store very long, random passphrases. XKCD has a great comic around this topic
(https://xkcd.com/936/).

Recommendations
Based on the information presented in this article, review the password rules in place at your employer.
Where did these rules come from? What was the intended result of the rules and do those still hold true
with today’s computing power?

IBM recommends simply increasing the minimum password length to at least 16 characters, regardless
of any other rules in place. Consider adding tools to check when a user changes his/her password to
make sure it’s not on the list of most common passwords. The IBM Lab Services team offers one such
tool that can be plugged into your IBM i system. Or have a password audit conducted. This service will
reveal how many users are vulnerable through dictionary passwords and how many of those accounts
have privileged or elevated access to the system.

For more information on these services or tools, visit the IBM i Security page (ibm.biz/IBMiSecurity).

https://xkcd.com/936/

Bio: Robert Andrews is a managing consultant specializing in security for the IBM Systems Hardware
Client Technical Teams Lab Services Power Systems* Delivery Practice in Rochester, Minnesota. Besides
security, Robert is an expert in DB2*, journalizing and DDM/DRDA. In addition to his technical work at
IBM, Robert has been involved in emergency management and communications for almost a decade at
all levels from local to federal. He has published seven books and holds degrees in mathematics,
computer science, education and management. Email him at robert @robertandrews.com.

Sidebar: Password Recovery Caution

If a website offers password recovery where the site sends the user a password via
email, that site is insecure! The site is either storing the password in plain text or
using a reversible hash, neither of which is good. Sites should only offer password
resets where the user can set a new password after some other form of
verification, usually an emailed link or set of security questions.

	Storing Passwords
	Cracking Passwords
	Preventing Attacks
	What is the Answer?
	Recommendations

